

Management for optimum yield of open pollinated and hybrid canola

S. Brandt, D. Ulrich, G. Lafond*, S. Mahli** and A.M. Johnston†

Scott Research Farm, P.O. Box 10, Highway 374, Scott, SK S0K 4A0

*Indian Head Research Farm, Box 760, Indian Head, SK S0G 2K0

** Melfort Research Farm, Highway 6 South Melfort, SK S0E 1A0

†Potash and Phosphate Institute of Canada, Suite 704, CN Tower, Midtown Plaza
Saskatoon, SK S7K 1J5

Final report

Prepared for:

Potash and Phosphate Institute of Canada
Suite 704, CN Tower, Midtown Plaza
Saskatoon, SK S7K 1J5

Saskatchewan Canola Development Commission
Canodev Research Inc.
212 – 111 Research Drive
Saskatoon, SK S7N 3R2

Western Co-operative Fertilizers Ltd.
Box 2500
Calgary, AB. T2P 2N1

April, 2003

Project # CARP 9930
Date Rec'd June 19/03
Researcher Brandt
Reviewed by X Brandt
Date Reviewed X June 23/2003

Introduction:

Newer open pollinated and hybrid canola varieties provide higher yield potential but the management strategies necessary to achieve optimum yield are not well understood. To better understand the levels of inputs required to optimize yield and to enhance producers ability to optimize return on their investment field research trials were conducted over a three-year period (1998-2001) at Melfort, Indian Head, and Scott with the following objectives:

Objective 1: To evaluate the effect of seeding rate, fertilizer addition and fungicides on the optimum yield potential of hybrid and open pollinated canola in the Thick Black, Thin Black and Dark Brown soil zones.

Objective 2: To determine if more N is required to optimize yield of hybrid than OP cultivars because of the higher yield potential of hybrids.

Materials and Methods:

The canola management study was conducted at Melfort (Thick Black), Indian Head (Thin Black), and Scott (Dark Brown) in 1999, 2000, and 2001. The management study was lost at Melfort in 1999 as a result of damage to the growing point caused by leaching of Muster after a heavy rain. At Scott in 2000 suspected high levels of residual soil N were observed to run perpendicular across all 4 replicates of the management study resulting in abnormally high biomass and seed production. A combined analyses of results from the canola management study across years and locations was therefore confined to 2000-2001 for Melfort, 1999&2001 for Scott and 1999-2001 for Indian Head for a total of 7 site-year locations. The inclusion of Melfort-2000 however did require adjustments for shatter loss caused by wind damage prior to threshing. An additional N rate study was conducted at each location in 2000 and 2001 to evaluate a broader range of N application rates. All 6 location years for the N rate study used in a combined analyses. Studies incorporated Quantum, representing high yielding open pollinated (OP) varieties, and Invigor 2273 in 1999 and Invigor 2663 in 2000-2001 representing high yielding hybrid (HYB) varieties. Canola was direct seeded into wheat stubble using low disturbance hoe openers at Scott and knife openers at Melfort and Indian Head with on row packers. Row spacing was 20 cm at Scott, 23 cm at Melfort, and 30 cm at Indian Head. Background levels of nitrogen to 60 cm depth, phosphate to 15 cm, potassium to 15 cm and sulfur to 60 cm depth were measured each year to assist in establishing target N levels and to determine available N in the N rate study. Nitrogen was applied as urea at seeding by mid row banding at Scott and side banding at Indian Head and Melfort. A P-K-S blend was applied below the seed at Scott and beside the seed at Melfort in Indian Head. Weeds were controlled to minimize pest losses. Data collection included plant density, crop biomass and seed yield, growth staging (flowering initiation, end of flowering, 30% seed maturity) as well as percent green seed, % oil and protein (NIR). See Appendix 1 for a more detailed summary of operations, inputs and data collection dates.

The canola management study experiment was designed as a 3 level factorial with a fungicide strip. Factors in the experiment in addition to OP and HYB cultivars included three N fertility levels needed to supply 0.67, 1.0 and 1.33 X a target level and three seeding rates 2.7, 5.8, 8.4 kg/ha. A blend of P-K-S was applied at rates that increased as N rate increased. Fertility levels were categorized as low, middle, and high with target levels specific to each location. Table 1 summarizes N (soil + fertilizer) levels on the experiment between 1999 and 2001. The fungicide strip received an application of Ronilan EG (vinclozolin) for control of sclerotinia with an added application of Quadris (azoxystrobin) at Melfort. Disease surveys were conducted prior to swathing.

Table 1. Combined soil and fertilizer N levels (kg/ha) at each location for the canola management study.

Year	Scott				Indian Head				Melfort			
	1999	2000	2001	Mean	1999	2000	2001	Mean	1999	2000	2001	Mean
67 %	58	100	76	78	110	91	125	109	-	82	77	80
Target	84	111	113	103	144	127	169	147	-	121	117	119
133 %	110	123	150	128	184	163	212	186	-	161	157	159

The N rate study was designed as a factorial experiment with 6 rates of applied N; 0, 30, 60, 90, 120 and 150 kg/ha. Nitrogen was banded prior to seeding at Scott and side banded at Melfort and Indian Head at the time of seeding. Table 2 summarizes soil N levels prior to fertilizer N applications in 2000 and 2001. A single rate of a P-K-S blend was applied. Fungicides were applied when disease levels warranted. The target seed rate was 9 kg/ha.

Table 2. Soil N levels prior to fertilizer application on the N rate study.

	Scott			Indian Head			Melfort		
	2000	2001	Mean	2000	2001	Mean	2000	2001	Mean
Soil N (kg/ha)	74	22	48	45	30	29	68	61	65

Table 3. Monthly precipitation and mean monthly temperatures at Scott, Melfort and Indian Head.

Month	Precipitation (mm)				Temperature (Celsius)			
	1999	2000	2001	Long Term 1950-1997	1999	2000	2001	Long Term 1950-1997
Scott								
May	66	24	18	34	9.4	9.4	11	10.4
June	43	41	59	65	13.6	13.5	13.9	14.8
July	81	91	37	66	15.1	17.8	17.7	17.1
August	48	57	4	46	16.8	15.6	19	16.1
Melfort								
May	41	15	9	41	10.2	9.1	11.2	10.3
June	14	74	23	62	14	13	15.8	15.2
July	96	106	46	69	15.9	17.6	18.5	17.4
August	36	47	11	53	17	16.6	19.1	16.2
Indian Head								
May	67	68	2	50	10.4	10.1	11.4	10.8
June	116	105	29	74	14.5	13.1	14.4	15.9
July	84	46	41	62	16	18	18.1	18.5
August	88	63	13	53	16.6	16.4	18.9	17.5

Spring soil moisture conditions were near normal with the exception of below normal at Scott and above normal at Indian Head in 2001. Long term average May-July precipitation of 165 mm at Scott, 172 mm at Melfort and 186 mm at Indian Head yielded an overall average of 175 mm. May-July precipitation in 1999 ranged from 115% of normal at Scott to 144% of normal at Indian Head, in 2000 from 95%(Scott) to 117%(Indian Head) of normal, and in 2001 39%(Indian Head) to

69% (Scott) of normal. For the seven location years used in the combined analyses of management study results overall precipitation averaged 151 mm or 86% of normal. For the 6 location years of the N rate study precipitation averaged 139 mm or 80% of normal. The growing season in 1999 and 2000 were characterized by cool temperatures with above normal temperatures recorded in 2001. The combination of near to above normal precipitation with cool temperatures in 1999 and 2000 generally resulted in lush crop canopies producing normal to above normal yields. Dry conditions in May of 2000 at Scott and Melfort and at all locations in 2001 reduced plant populations with additional plant loss occurring in the management study at Melfort in 2000 as a result of frost. Below normal precipitation and above normal temperatures in 2001 reduced biomass production that generated below normal yields.

Results and Discussion

1.0 Management Study Agronomic Results

Because the same weight of seed was sown for both cultivars, and the seed size for the HYB was greater than that of OP, the number of seeds sown was lower. This was the major factor affecting cultivar differences in plant density (Table 4). In general plant densities were lower for Invigor than Quantum, while the reverse occurred for percent establishment. Biomass and grain yield with the HYB was similar or higher than OP at all location years, and averaged 12% higher for both. With above normal moisture during 1999, the grain yield differences between cultivars were relatively small. By contrast, 2001 was very dry at all locations, and grain yield differences between cultivars were quite large (Figure 1). This in itself may not be sufficient to conclude that hybrids (Invigor) are more drought tolerant than open pollinate (Quantum) cultivars. However, it does provide strong evidence that they are at least equal and possibly more drought tolerant.

Table 4. Plant densities, plant establishment, biomass production and grain yield of Invigor and Quantum canola at Scott, Melfort and Indian Head during 1999-2001. (Data is the mean of 3 seed rates and 3 fertility levels).

<u>Location (year)</u>	<u>Plant density</u>		<u>Percent establishment</u>		<u>Biomass (t/ha)</u>		<u>Grain yield (kg/ha)</u>	
	Invigor	Quantum	Invigor	Quantum	Invigor	Quantum	Invigor	Quantum
Scott (1999)	81b	139a	68	82	6.69a	5.77b	2470a	2360b
Indian He (1999)	56b	64a	45	38	11.02a	9.84b	1750	1790
Scott (2000)	75a	66b	55	38	5.97	5.47	1690a	1460b
Indian Head (2000)	112	107	82	61	9.45a	8.49b	2040a	1790b
Melfort (2000)	19b	27a	14	15	7.27a	6.47b	2030a	1870b
Scott (2001)	108b	144a	89	87	5.82a	5.37b	1350a	1200b
Indian Head (2001)	41	40	34	24	6.40a	5.59	1300a	850b
Melfort (2001)	45	46	37	28	6.41a	5.47b	1870a	1580b
8 Loc Yr Mean	67b	79a	53	47	7.38a	6.56b	1810a	1610b

Values followed by a different letter are significantly different at P=0.05.

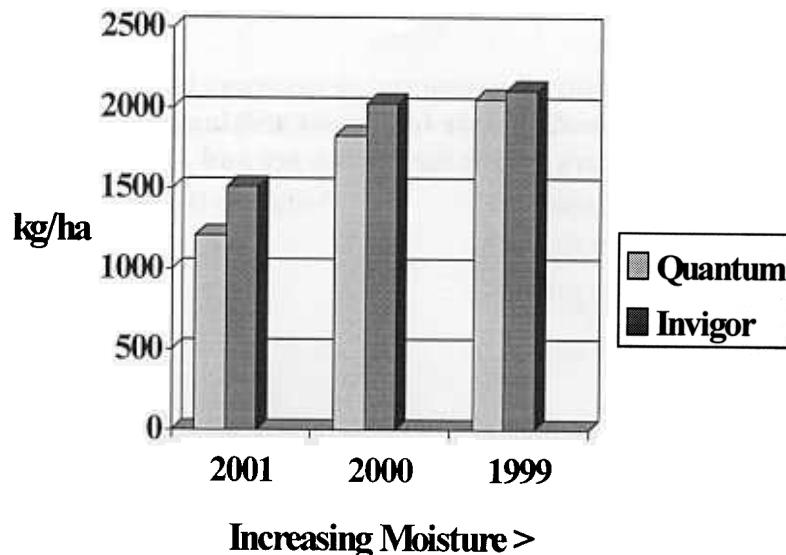


Figure 1. Impact of moisture on average yields [kg/ha] of Quantum and Invigor (Invigor 2273 in 1999 and Invigor 2663 in 2000-2001) canola at Scott, Melfort, and Indian Head.

There were small (generally 1-2 day) cultivar differences in time to start flowering and time to maturity, but the differences were not consistent across location years (data not shown). Disease incidence tended to be quite low for most location years, with one exception. At Melfort in 2000, sclerotinia incidence and sclerotinia induced seed loss (estimated) were higher for Invigor than for Quantum, although values for both cultivars were relatively low.

A combined analyses of yields revealed a consistent response among the 2 cultivars to seed rate, nutrient level, and fungicide despite the HYB producing on average 865 kg/ha more biomass and 194 kg/ha more seed than OP. Fungicide treatment alone generally failed to invoke a yield response as levels of sclerotinia were low. The interaction of fungicide with fertility level was significant at $P=0.05$, and there was a tendency for the seed rate x fungicide interaction to be significant ($P=0.055$) when analysed across location years. At the low fertility level, yield was unaffected by fungicide (Table 5), while at the mid and high fertility levels, a small yield increase was noted where fungicides were applied. This suggests that enhanced growth with higher fertility likely created an environment more conducive to sclerotinia infection and development. At Scott in 1999, and at Indian Head in 2000, sclerotinia incidence and yield loss ratings did increase with increased fertility (data not shown).

Table 5. Yield (kg/ha) response to fungicide treatment and increasing fertility averaged across 7 location years. (Values are means for 2 cultivars and 3 seed rates).

<u>Fungicide treatment</u>	<u>Fertility level</u>		
	<u>Low</u>	<u>Mid</u>	<u>High</u>
None	1619d	1723c	1807b
Treated	1593d	1782b	1856a
LSD ($P=0.05$)		39	

Values followed by a different letter are significantly different at $P=0.05$.

Fungicide application only increased yield at the lowest seed rate (Table 6). This would suggest that the longer flowering period associated with reduced seed rates may have allowed more time for

sclerotinia to affect the crop. However, sclerotinia incidence and severity ratings were similar for all seed rates (data not shown).

Table 6. Yield (kg/ha) response to fungicide treatment and increasing seed rate averaged across 7 location years. (Values are means for 2 cultivars and 3 fertility levels).

<u>Fungicide treatment</u>	<u>2.8</u>	<u>5.6</u>	<u>8.4</u>
None	1558e	1751c	1839a
Treated	1618d	1794c	1819ab
LSD (P=0.05)		51	

Values followed by a different letter are significantly different at P=0.05.

Increasing seed rate and increasing fertility level generally increased yield (Table 7). Higher seeding rates however did not increase biomass indicating later emerging branches created at low plant densities were less effective at converting biomass to yield than earlier emerging branches at high seeding rates. Fertility level x seed rate interactions showed yields increased as inputs increased. At the low fertility level, yield increased when seed rate was increased from 2.8 to 5.6 kg/ha, but was not increased further when seed rate increased to 8.4 kg/ha; higher fertility was required to induce a yield response to higher seed rate. Similarly, at the 2.8 kg/ha seed rate, yield was higher for the mid than low fertility but further increases in yield were not noted for the high fertility rate; responses to high fertility only occurred at the 5.6 and 8.4 kg/ha seed rates. This provided a strong indication that higher plant densities are required to take advantage of higher fertility, and vice versa. The lack of an interaction of cultivar with seed rate or fertility level provided a good indication that both cultivars require similar seed rates and fertility to optimize yield.

Table 7. Yield (kg/ha) response to increasing fertility and increasing seed rate averaged across 7 location years. (Values are means for 2 cultivars and 2 fungicide treatments).

<u>Fertility level</u>	<u>2.8</u>	<u>5.6</u>	<u>8.4</u>
Low	1489e	1673d	1654d
Mid	1616d	1773c	1868b
High	1659d	1870b	1964a
LSD (P=0.05)		51	

Values followed by a different letter are significantly different at P=0.05.

Because percent emergence varied considerably across location years, an attempt was made to identify the plant densities required to achieve adequate responses to higher fertility. In general, where plant densities were less than 45 plants/m² yield responses to higher fertility were 0-6% compared with the low fertility level. Where plant densities exceeded 65/m² yield responses to higher fertility averaged 12-18%.

1.0.1 Grain Quality

As with yield, treatment effects on oil concentration varied somewhat between location years. Oil concentration was higher for the Invigor hybrid than for Quantum at 5 of 7 location years. The reverse occurred at the remaining 2 location years. Oil concentration for Invigor averaged 47.0% while it was 46.4% for Quantum over all location years.

Oil concentration declined with increasing fertility level, and this trend was quite consistent across

location years (Table 8). There was also a general tendency for oil concentration to increase as seed rate increased, although this tendency was not very consistent across location years.

Table 8. Oil concentration [%] response to increasing fertility and increasing seed rate averaged across 7 location years. (Values are means for 2 cultivars and 2 fungicide treatments).

<u>Fertility level</u>	<u>% oil</u>	<u>Seed rate [kg/ha]</u>	<u>% oil</u>
Low	47.4a	2.8	46.3b
Mid	46.7b	5.6	46.9a
High	46.1c	8.4	46.9a
LSD (P=0.05)	0.4		0.2

Values followed by a different letter are significantly different at P=0.05.

The impact of fungicides on oil concentration was negligible.

Differences in protein concentration between cultivars was less consistent than for oil concentration, but Invigor averaged 24.8% while Quantum was significantly lower at 24.4%.

There was a general tendency for protein concentration to increase as fertility increased, and to decrease as seed rate increased (Table 9). This was to be expected since protein generally reflects the supply of N. Increasing N supply with greater fertility would be expected to increase protein concentration in addition to increasing yield. Increased seed rate increased yield but since the supply of N did not increase, yield would be expected to dilute protein.

Generally there is an inverse relationship between oil and protein concentrations. Factors that increase one tend to reduce the other. This provides a likely explanation for the tendency for oil to increase as seed rate increased.

Table 9. Protein concentration [%] response to increasing fertility and increasing seed rate averaged across 7 location years. (Values are means for 2 cultivars and 2 fungicide treatments).

<u>Fertility level</u>	<u>% protein</u>	<u>Seed rate [kg/ha]</u>	<u>% protein</u>
Low	24.2c	2.8	24.8a
Mid	24.6b	5.6	24.5b
High	25.0a	8.4	24.5b
LSD (P=0.05)	0.35		0.26

Values followed by a different letter are significantly different at P=0.05.

Yield of total oil and total protein reflected the combined effects of treatments on grain yield and concentration of these components in the grain. In most cases, treatment effects on yield were so large that they masked effects on concentration where concentration responses were inverse to yield responses (Table 10). In general, yield of both components was

- highest for Invigor
- increased with increased fertility
- increased with increasing seed rate from 2.8 to 5.6 kg/ha, but no further increase at 8.4 kg/ha.

Table 10. Protein and oil yield responses to increasing fertility and increasing seed rate averaged across 7 location years. (Values are means for 2 cultivars and 2 fungicide treatments).

<u>Fertility level</u>	<u>protein[kg/ha]</u>	<u>oil [kg/ha]</u>	<u>Seed rate [kg/ha]</u>	<u>protein[kg/ha]</u>	<u>oil [kg/ha]</u>
Low	387c	765b	2.8	392b	741b
Mid	429b	823a	5.6	433a	835a
High	456a	849a	8.4	447a	861a
LSD	24	42		31	56

Values followed by a different letter are significantly different at P=0.05.

Green seed was also determined, and treatments did affect levels of green seed. There was a tendency for green seed to be higher at the highest fertility level, but overall green seed levels were very low. Thus the practical significance of this is not known.

1.1 N Rate Study Agronomic Results

A combined analysis of the data from all locations and years indicated that the interaction of cultivar with N rate and location-year was significant. This would suggest that the 2 cultivars did not respond to N in the same manner at all location-years. However, a closer examination of the individual location- year data did not reveal any major discrepancies. The magnitude of the responses to N varied considerably over location-years, but the general trend was for yield to increase with N rate (Appendix 17). In no case was the zero N rate significantly higher yielding than any of the N treatments at the same location-year. Similarly, there were instances where the OP tended to be higher yielding than the HYB at one N rate within a location year. However, in almost all cases the yield of the HYB equalled or exceeded that of the OP variety.

During 2001 when conditions were dry, overall yields were lower and 118 kg/ha of applied N was sufficient to maximize yield of both cultivars (Figure 2). Yield was not maximized even with the highest N rate under near normal moisture conditions in 2000. HYB yielded 2751 kg/ha at 150 kg/ha of N in 2000 versus 2439 kg/ha for OP at that rate in that year. In 2001 the HYB reached a maximum yield of 1734 kg/ha compared to 1411 kg/ha for OP.

Averaged over all location and years, yield of the HYB was maximized at 2198 kg/ha with 134 kg/ha of fertilizer N. The yield of the OP variety was maximized 1906 kg/ha with 149 kg/ha of fertilizer N (Figure 3). HYB yielded more at all levels of applied N indicating that it used N more efficiently than the OP variety. The relative difference in yield between the 2 cultivars increased as N supply increased, yielding 10% more when no N was applied and 16.6 % more when 110 kg/ha of N was applied. The higher N use efficiency of the HYB increased yields by an average of 246 kg/ha over all N rates. These results indicate that HYB did not require more N, but it did use N more efficiently.

Harvest index values plotted against increasing levels of applied N revealed consistently greater HYB plant growth may have resulted in the HYB consuming more soil water in May and June (Figure 4). Depleted soil water reserves when not replaced by rain reduced the water available for seed fill later in the growing season. This resulted in maximum harvest index being achieved at a lower applied N rate for the HYB than OP (94 kg/ha vs 129 kg/ha). Although this may have prevented the HYB from achieving its higher yield potential, the HYB still produced more grain per unit of biomass than the OP.

1.1.1 Grain Quality

The cultivar effect on oil concentration was significant and quite consistent across location years,

averaging 47.9% for Invigor 2663, and 46.3% for Quantum. This occurred despite higher grain yield for Invigor 2263, which consistently resulted in higher oil yield for this cultivar. Protein concentration was generally higher for Invigor 2663 [24.4%] than Quantum [24.1] as well, but the trend was much less consistent across location years than for oil. However, because Invigor 2663 was consistently higher yielding, protein yield was also consistently higher.

Increasing the N application rate consistently increased protein concentration, protein yield and oil yield while decreasing oil percentage (Table 11). At N rates above 90 kg/ha, oil yield showed very little added response, but protein yield continued to increase even at the highest rate.

Green seed was also determined, and there was a clear tendency for increasing N to increase green seed of both cultivars [from 0.25% at the lowest rate to 1.10 % at the highest N rate], on average across site years. This combined with a similar observation for the other experiment would suggest that the risk of downgrading due to this quality factor will increase somewhat as fertilizer N rate is increased.

Table 11. Protein and oil concentration and yield responses to increasing fertility and increasing seed rate averaged across 6 location years for protein and 4 location years for oil.

<u>N rate [kg/ha]</u>	<u>protein [%]</u>	<u>oil [%]</u>	<u>protein[kg/ha]</u>	<u>oil [kg/ha]</u>
0	23.5	49.1	273	583
30	23.6	48.7	351	767
60	24.1	47.2	407	828
90	24.5	46.3	466	868
120	24.9	45.8	474	871
150	25.1	45.3	501	878
	0.4	0.8	52	88

Values followed by a different letter are significantly different at P=0.05.

2.0 Management Study Economics / Marginal Returns

Economic analyses were performed on the data based on costs from the 2001 Crop Planner published by Saskatchewan Agriculture and Food (available on the Saskatchewan Agriculture and Food website). Table 12 outlines the actual expenses used in the analysis. Treatments were evaluated on the basis of profit probability as determined by canola price and N cost. Highest profit probability conditions existed at the high canola price and low N costs (\$352/tonne canola- N=\$0.51/kg), intermediate at high canola price and high N cost or low canola price and low N cost (\$352/tonne- N=\$0.75/kg, \$264/tonne-N=\$0.51/kg) and low profit probability at low canola price and high N cost (\$264/tonne-N=0.75/kg). Assumed seed costs for HYB were \$9.35/kg for HYB and \$4.40/kg for OP.

The HYB averaged \$24/ha more in net returns than OP at the canola price of \$264/tonne and \$40/ha more at \$352/tonne. Under best profit probability conditions net returns of OP and HYB were maximized at the high seed rate (8.4 kg/ha) and high fertility level (net returns of \$242/ha for OP vs \$272/ha for HYB).

At intermediate profit probability levels high seed rates and moderate-high fertility levels maximized net returns from \$79/ha for OP to \$242/ha for HYB (Figure 5). Under low profit probability conditions the high seed rate in combination with moderate fertility level continued to maximize profits for OP (\$58/ha) but reduced HYB net returns by \$9/ha compared to mid seed rate (5.6 kg/ha) and low fertility (\$79/ha). This suggests reducing inputs will lower net returns because yield is

reduced. Even at the low canola price (\$264/tonne) and high N cost (N=\$0.75/kg) savings from reduced inputs for HYB appeared minimal compared to the potential loss should canola prices improve (Figure 5). These results, which occurred when growing season moisture averaged across location years was below normal, suggests that the full economic value of higher yielding canola cultivars can only be realized when fertilizer and seed rates are at or above the maximum recommended rate.

Table 12. Crop production costs (\$/ha) used in economic analyses (based on 2001 Crop Planner published by Saskatchewan Agriculture and Food). [actual values are a weighted average for the Dark Brown and Black soil zones based on the number of location years of data for each soil zone].

Variable expenses (\$/ha)	129.40
Including chemicals, machinery operating, custom work and hired labour, crop insurance premiums, utilities and miscellaneous expenses, and interest on variable expenses, but excludes seed and fertilizer costs that varied across treatments.	
Other expenses (\$/ha)	129.75
Including building repair, property taxes, insurance and licences, machinery depreciation, building investment, and land investment.	

Net returns were also calculated using an average canola price of \$310/tonne for each cultivar x seed rate x fertility level x fungicide treatment for each location year. In addition the returns per \$ invested and coefficients of variability of net returns for each treatment combination was determined. To calculate an index of variability of net income, the coefficient of variability (CV) for one treatment (considered a check) was assigned a value of 1.00, and indexes for other treatments were calculated based on the magnitude of the corresponding CV relative to the check [example; if the CV for a treatment was 25% larger than for the check, the index would be 1.25]. Only selected economic data are reported here.

Not surprisingly, total costs were higher (reflecting seed costs) for the HYB than the OP variety, but the value of higher yield more than offset higher costs (Table 13), resulting in net returns that were \$34/ha higher. Net income was only 2/3 as variable for the Invigor than for Quantum (index of variability of 0.67 vs 1.00), and return per \$ invested was higher for Invigor. The reduced income variability reflected the relatively good yield performance of Invigor in 2001, the driest year at all locations. This is not surprising, and reflects that cultivars or other practices that perform well in dry years provide income stability. The effect of the hybrid in this study is somewhat unique in that many technologies that improve drought tolerance also restrict yield in years of favourable moisture. Technologies that restrict yield losses in dry years but perform well in wetter conditions are the most desirable of strategies to cope with drought and stabilize income.

Net returns were highest for the combination of high fertility and the highest seed rate (Table 14), and were generally low for the lowest seed rate, although it was low also for low fertility, high seed rate combination. Income variability was high and return per \$ invested low for the low seed rate across all fertility levels. Low seed rates increase the probability that plant populations are insufficient to make efficient use of moisture and inputs used to produce a crop. With high seed rates, it is important that fertility is adequate to ensure that the crop can optimize yield. Overall the mid to high fertility rates, combined with mid to high seed rates were favoured.

Table 13. Economic Comparison of Cultivars (means for 7 location years)[Canola @ \$310/tonne].

	<u>Invigor</u>	<u>Quantum</u>
Total cost (\$/ha)	400	373
Gross return (\$/ha)	563	502
Net return (\$/ha)	163	129
Index of income variability*	0.67	1
Return per \$ invested	1.4	1.35

*Index of income variability is a relative measure of the coefficient of variability of net income over location years where the 5.6 kg/ha seed rate with mid fertility has been assigned a value of 1.00.

Table 14. Economic comparisons of seed and fertilizer rates.

Seed rate (kg/ha)	Net returns (\$/ha)			Index of income variability*			Return per \$ Invested		
	Fertility level			Fertility level			Fertility level		
	Low	Mid	High	Low	Mid	High	Low	Mid	High
2.8	120	132	118	1.2	1.4	1.92	1.35	1.36	1.3
5.6	154	158	161	0.96	1	1.2	1.42	1.41	1.39
8.4	130	168	172	0.98	0.95	1.05	1.39	1.42	1.4

*Index of income variability is a relative measure of the coefficient of variability of net income over location years where the 5.6 kg/ha seed rate with mid fertility has been assigned a value of 1.00.

2.1 N Rate Study Economic/Marginal Returns

An economic evaluation of the data was performed using production costs from the 2001 Saskatchewan Crop Planner published by Saskatchewan Agriculture and Food. Additional functions were added to account for assumed differences in seed costs of \$9.35/kg for HYB and \$4.40/kg for OP. In addition, several price scenarios for fertilizer N and for the value of canola were evaluated. When maximizing net returns, higher HYB yields translated into an additional \$15.10/ha for every \$50/tonne increase in the price of canola above \$147/tonne (Figure 6). In general, the economic benefit of growing the HYB over OP was >Indian Head > Melfort > Scott. When adequately N fertilized, the HYB provided greater economic returns than OP at all sites. A combined analysis showed net returns were maximized for both cultivars near 112 kg/ha of applied N, when canola was priced between \$220-352/tonne and N costs ranged from \$0.51-0.75/kg. When results were separated on the basis of moisture availability the income advantage of the HYB was retained under below normal moisture conditions. N required to maximize returns for both cultivars however decreased as moisture decreased. At \$264/tonne and N=0.75/kg, 126 kg/ha or more of applied N was required to optimize net returns in 2000 compared to 90 kg/ha under the drier conditions of 2001. These results indicate many producers are setting lower target N levels than are required to optimize returns for canola on wheat stubble even when moisture and canola prices fall short of expectations.

These results indicate that target N levels for canola grown on wheat stubble in a moisture limited environment should be the same for a higher yielding hybrid as they are for a high yielding open pollinated variety. It also suggests that high yielding varieties should be receiving more fertilizer to maximize yield and optimize net economic return than is currently being applied by many producers.

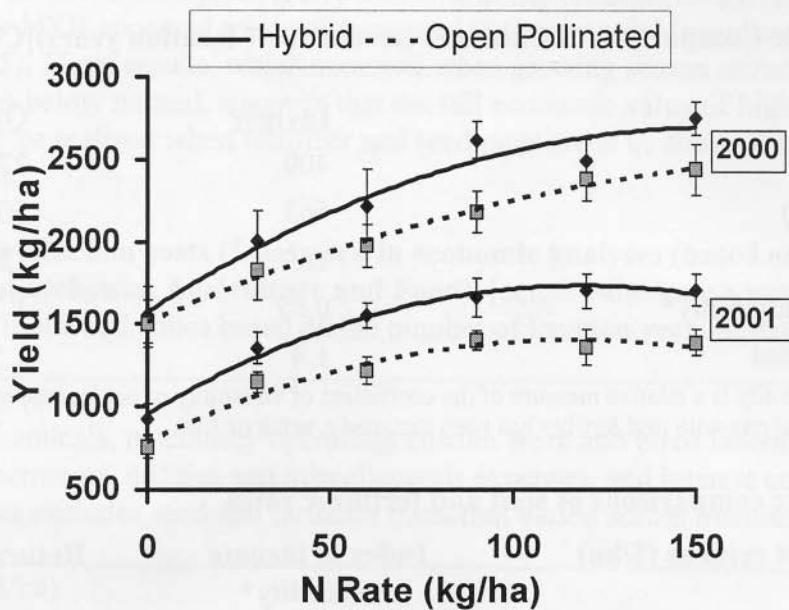


Figure 2. Yield (kg/ha) as a function of applied nitrogen under normal-above normal moisture conditions in 2000 and below normal moisture conditions in 2001.

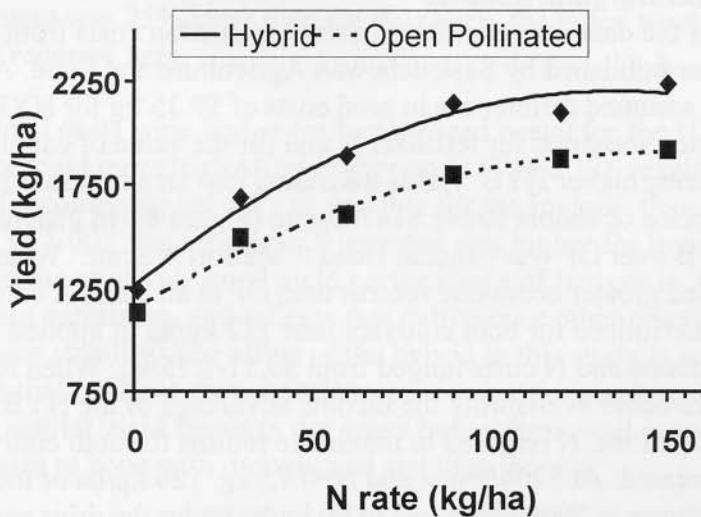


Figure 3. Yield (kg/ha) as a function of applied nitrogen.

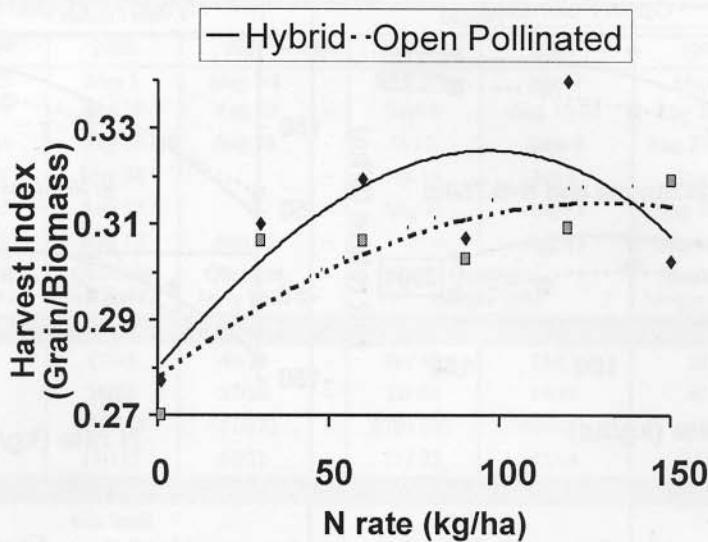


Figure 4. Harvest index as a function of applied nitrogen.

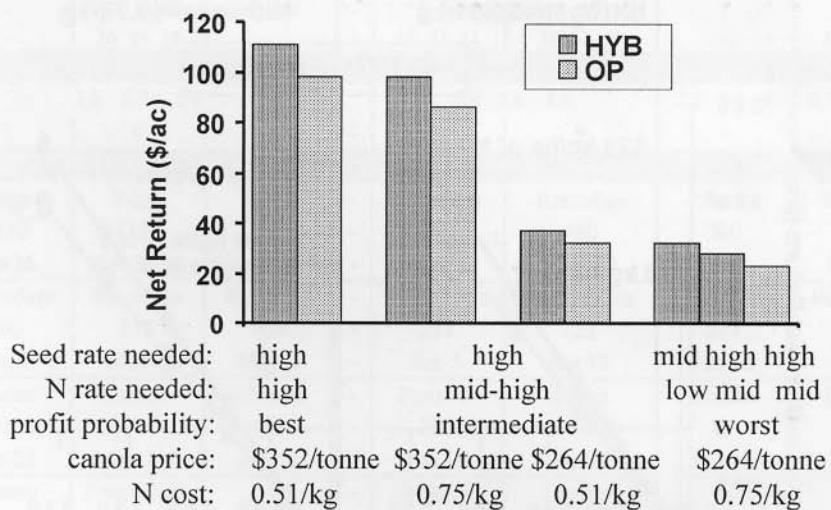


Figure 5. Net returns for variable seed and N rates when canola was priced from \$352-264/tonne and N costs ranged from \$0.51-0.75/kg.

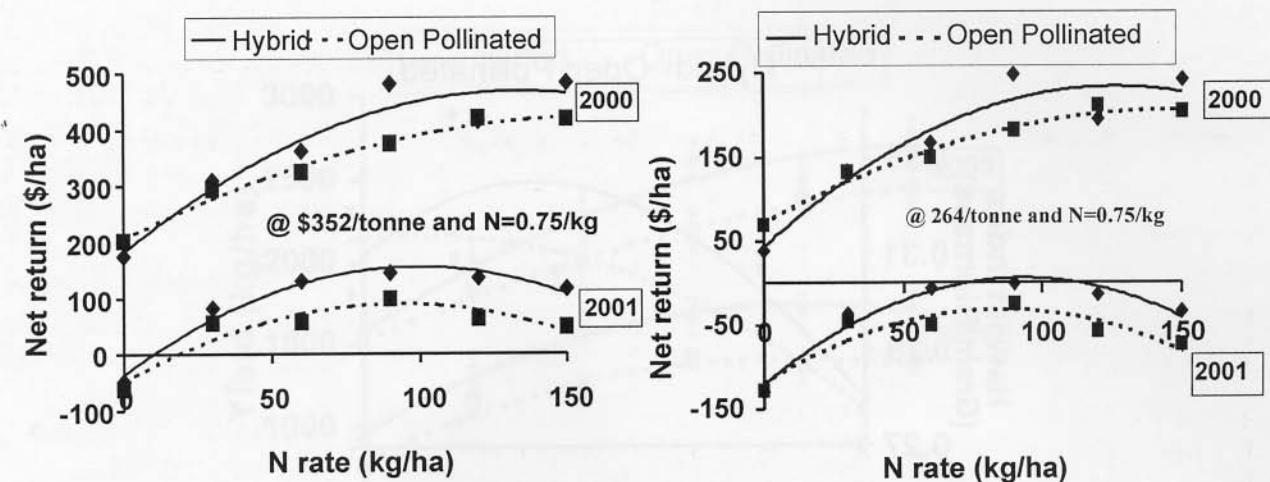


Figure 6. Maximum net returns for applied N when canola was priced from \$147-352/tonne and N cost \$0.51 and \$0.75/kg.

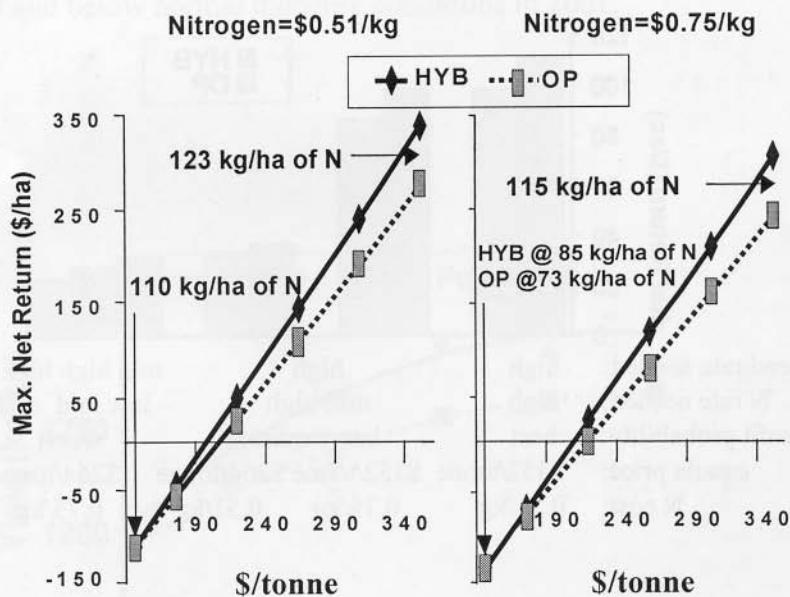


Figure 7. Impact of near normal moisture conditions in 2000 and below normal moisture in 2001 on net return(\$/ac) of hybrid and open pollinated canola at \$264-\$352/tonne and N=0.75/kg.

Appendix 1. Management and N Rate study variable inputs, operation and data collection dates.

Management and N Rate study variable inputs, operation and data collection dates.												
Seeding Date Swathing Date Harvest Date Plant Counts Biomass Dis. Survey Canola	Indian Head			Melfort			Scott					
	1999	2000	2001	99	2000	2001	1999	2000	2001			
	May 25	May 3	May 7-8	-	May 7-8	May 7	May 7	May 12	May 5			
	Aug 31	Aug 15	Aug 20	-	Sept 6	Aug 15-22	Aug 20-25	Aug 18-31	Aug 9			
	Sept 16	Aug 29	Aug 28	-	Oct 2	Sept-4	Aug 27-Se 4	Sept 13	Aug 18			
	Jun 29	May 30		-	Jun 16	Jun 4	Jun 2	Jun 8	May 29			
	Aug 25	Aug 14		-	Aug 31	Aug 15	Aug 19-20	Aug 22-24	Aug 7			
	Aug 24	Aug 10	Aug 15	-		Aug 17	Aug 19-23	Aug 22	Aug 7			
	Quantum Invig 2473	Quantum Invig 2473	Quantum Invig 2663	-	Quantum Invigor 2663		Quantum Invigor 2273		Quantum Invigor 2663			
Soil Test Results on Management and/or N Rate study(kg/ha)												
NO ₃ -N 0-60cm	34.7	17/45	40/30	-	39 / 68	28/61	38	74	22			
PO ₄ -P 0-15cm	11.2	16/22	27/36	-	21 / 60	19/54	42	55	4			
K 0-15cm	571	557/571	571/571	-	570 / 605	540/456	>600	>600	-			
SO ₄ -S 0-60cm	95	17/112	55/71	-	71 / 72	52/64	112	172	-			
Fertilizer Management Study (kg/ha)												
N Placement		side band					side band					
N target %	66	100	133	66	100	133	66	100	133	66	100	133
N	75	109	149	74	110	146	85	129	172	43	82	122
P ₂ O ₅	23	34	45	22	34	45	17	25	33	6	19	32
K	11	17	23	11	17	23	8	13	17	6	19	32
S	11	17	23	11	17	23	8	13	17	2	6	11
Fertilizer N Rate study (kg/ha)												
N	-	0, 30, 60, 90, 120, 150					-	0, 30, 60, 90, 120, 150				
P K S	-	26	13	13	-	33	33	11	33	33	11	33
Seeding Rates (kg/ha)		Seed size(g/1000) 1999: Inv2273=4.5 Qtm=3.3					2000: Inv2663=4.1 Qtm=3.2					
Management		2.8	5.6	8.4			2.8	5.6	8.4	2.3	4.5	9
N Rate	-		9		-	9		9		-		9
Herbicides (Management and N Rate study) N Rate study only*												
#1 product	Edge	Edge	Edge	-	Roundup	Roundup	Liberty	Roundup	Roundup	Roundup	Roundup	
rate:g	1130	1350	1413	-	659	440	500	440	440	1758		
date	Apr 26	Nov 22/99	Oct 17/00	-	May 7	May 10	Jun 8	May 14	May 14	May 8		
#2 product	Roundup	Roundup	Roundup	-	Poast Ultra	Poast Ultra	Poast Ultra	Poast Ultra	Poast Ultra	Poast Ultra		
rate:g	890	879	900	-	222	222	211	211	211	145		
date	May 7	May 4	May 8	-	Jun 5	Jun 12	Jun 12	Jun 13	Jun 13	Jun 12		
#3 product	Muster	Select*	Lontrel	-	Poast U	Muster	Muster	Lontrel	Lontrel	Muster		
rate:g	15	35.6*	153	-	222	15	22	151	151	15		
date	Jun 22	May 25*	Jun 11	-	Jun 19	Jun 12	Jun 12	Jun 13	Jun 13	Jun 12		
#4 product	Assure	Poast Ultra		-	Muster	Lontrel				Lontrel		
rate:g	102	361		-	22	151				151		
date	Jun 22	Jun 7		-	Jun 19	Jun 12				Jun 12		
#5 product		Lontrel		-		Decis				Decis		
rate:g		150		-		74				62		
date		Jun 7		-		Jul 16				Jul 20		
Fungicides (Management Study)												
#1 product	Ronilan 750	Ronilan 750	Ronilan	-	Quadris	Quadris	Ronilan	Ronilan	Ronilan	Ronilan		
rate:g ai/ha	1000	1000	400	-	125	125	500	500	500	500		
date	Jul 22	Jul 22	Jul 13	-	Jun 28	Jun 11	Jun 29	Jul 7	Jul 5			
#2 product				-	Ronilan	Ronilan						
rate:g ai/ha				-	494	494						
date				-	Jul 14	Jul 3						
Seeder	Conserva-Pak - 12" row spacing			Conserva-Pak - 9" row spacing			Versatile hoe drill - 8" row spacing					

Appendix 2. Biomass (kg/ha)

Treatment			1999			2000			2001			
'Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	5916	-	10188	5365	6493	10029	5111.77	4789.48	6611	
		5.6	6336	-	9235	6702	7567	8661	5085.55	6080.76	6291	
		8.4	5982	-	9181	5263	6605	8063	5199.04	5997.79	5182	
	mid	2.8	7742	-	9319	7088	7263	8967	6530.22	6924.62	8085	
		5.6	6775	-	11123	5013	7334	9742	6096.58	6248.36	6197	
		8.4	6116	-	9581	5572	7353	9102	6315.58	6883.89	5391	
	high	2.8	6892	-	14029	5725	6912	10849	6445.91	6524.36	6687	
		5.6	7010	-	13402	6221	7689	9635	5621.47	7312.04	7263	
		8.4	7464	-	13123	6782	8220	10039	5961.39	6820.05	6004	
Qtm	low	2.8	5732	-	9129	5486	4811	7944	4984.83	5365.68	5262	
		5.6	5417	-	8936	5360	6254	7019	5577.6	4888.86	5077	
		8.4	5267	-	9708	5234	6225	7925	4773.56	4822.56	4913	
	mid	2.8	5632	-	9221	5304	6133	7825	5897.7	5108.27	5924	
		5.6	5611	-	10125	5388	6706	8690	5239.26	5706.47	5502	
		8.4	5934	-	9292	5441	6262	8530	5455.66	5882	5795	
	high	2.8	6389	-	12329	5985	8077	9869	5332.35	5724.52	5487	
		5.6	5916	-	9085	5686	7161	8610	5386.71	6517.39	5606	
		8.4	6055	-	10725	5430	6630	9974	5636	6263	5684	
Inv			6693a	-	11020a	5970	7271a	9454a	5819a	6398a	6412a	
Qtm			5773b	-	9839b	5468	6473b	8487b	5365b	5587b	5472b	
LSD _{0.05}			361		947		597	842	243	374	782	
low			5775b	-	9396b	5552	6326b	8274b	5122b	5324b	5556	
			6301a	-	9777b	5634	6842ab	8809ab	5923a	6126a	6149	
			6621a	-	12116a	5972	7448a	9830a	5731a	6527a	6122	
LSD _{0.05}			443		1160		731	1032	298	458	957	
			2.8	6384	-	10703	5826	6615	9247	5717	5740B	6343A
			5.6	6178	-	10318	5728	7119	8726	5501	6126A	5989AB
LSD _{0.05}			8.4	6136	-	10268	5604	6882	8939	5557	6112AB	5495B
			443		1160		731	1032	298	382@10	999@10	
			no fung	6292	-	10687	5782	6477	8893	5594	5994	6297
			fung	6173	-	10172	5656	7267	9049	5590	5990	5587
			LSD _{0.05}	858		1947		1291	1080	750	639	1970

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 3. Grain yield (kg/ha)

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfo	Ind	Scott	Melfort	Ind	Scott	Melfort	Indian Head	
Inv	low	2.8	2172	-	1511	1404	1525	1761	1143	1639	1247	
		5.6	2287	-	1614	1671	2351	1881	1224	1755	1318	
		8.4	2292	-	1662	1899	1842	1786	1294	1799	1359	
	mid	2.8	2587	-	1540	1968	1884	1943	1361	1714	1103	
		5.6	2416	-	1818	1515	2146	2078	1264	1939	1431	
		8.4	2399	-	2028	1566	2101	2205	1479	2124	1455	
	high	2.8	2651	-	1721	1610	1675	2148	1421	1814	1047	
		5.6	2701	-	1887	1832	2215	2265	1383	1930	1321	
		8.4	2702	-	1937	1668	2490	2256	1537	2123	1436	
Qtm	low	2.8	2074	-	1649	1286	1497	1573	1046	1420	595	
		5.6	2217	-	1607	1156	1869	1618	1156	1636	897	
		8.4	2153	-	1661	1279	1848	1653	1108	1582	1126	
	mid	2.8	2336	-	1611	1316	1561	1791	1161	1396	643	
		5.6	2391	-	1829	1466	1859	1837	1186	1692	942	
		8.4	2402	-	1956	1891	2234	1847	1263	1780	881	
	high	2.8	2569	-	1719	1550	1495	1880	1240	1195	658	
		5.6	2532	-	1947	1543	2299	1958	1257	1676	815	
		8.4	2553	-	2089	1709	2190	1935	1359	1823	1070	
Inv			2467a	-	1746	1689a	2025a	2036a	1345a	1871	1302a	
Qtm			2358b	-	1785	1460b	1872b	1788b	1197b	1578	848b	
LSD _{0.05}			87		54		111	72	36	104	100	
	low	2199c	-	1617c	1427b	1822b	1712c	1162c	1638	1090		
		2422b	-	1797b	1632ab	1964a	1950b	1285b	1774	1076		
		2618a	-	1883a	1666a	2060a	2074a	1366a	1760	1058		
LSD _{0.05}			107		66		136	88	44	127	103	
	2.8	2398	-	1625c	1526	1606b	1849b	1228b	1530	882b		
		2424	-	1784b	1521	2123a	1939a	1245b	1771	1121a		
		2417	-	1889a	1677	2117a	1947a	1340a	1872	1221a		
LSD _{0.05}			107		66		136	88	44	127	103	
no fung			2387	-	1708	1497B	1875B	1915	1306	1717	1105	
fung			2439	-	1823	1653A	2022A	1909	1236	1732	1044	
LSD _{0.05}			177		216		188@10	139	169	316	298	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 4. Blackleg rating with severity increasing from 0 to 5

Treatment			1999				2000				2001			
Crop	N	Seed	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd			
			0	1	0	1	0	1	0	1	0	1	0	1
Inv	low	2.8	0.3	0.3	.	.	0.3	0.2	0.1	0.1	0.4	0.2	0.1	0.1
		5.6	0.3	0.3	.	.	0.0	0.0	0.1	0.1	0.3	0.3	0.3	0.1
		8.4	0.4	0.3	.	.	0.1	0.1	0.0	0.0	0.3	0.2	0.2	0.4
	mid	2.8	0.3	0.3	.	.	0.3	0.0	0.0	0.1	0.2	0.3	0.1	0.2
		5.6	0.3	0.3	.	.	0.0	0.1	0.1	0.1	0.4	0.3	0.1	0.1
		8.4	0.3	0.3	.	.	0.1	0.0	0.1	0.2	0.2	0.2	0.3	0.1
	high	2.8	0.4	0.4	.	.	0.0	0.1	0.1	0.1	0.2	0.1	0.1	0.2
		5.6	0.6	0.4	.	.	0.3	0.1	0.0	0.1	0.1	0.3	0.1	0.4
		8.4	0.4	0.3	.	.	0.1	0.0	0.1	0.1	0.2	0.3	0.2	0.3
Qtm	low	2.8	0.1	0.1	.	.	0.0	0.0	0.0	0.0	0.4	0.3	0.1	0.2
		5.6	0.1	0.1	.	.	0.1	0.0	0.1	0.1	0.4	0.2	0.0	0.2
		8.4	0.2	0.2	.	.	0.0	0.0	0.2	0.1	0.4	0.4	0.2	0.1
	mid	2.8	0.2	0.1	.	.	0.0	0.1	0.1	0.1	0.5	0.2	0.1	0.0
		5.6	0.1	0.2	.	.	0.0	0.0	0.0	0.1	0.4	0.3	0.1	0.1
		8.4	0.2	0.1	.	.	0.0	0.0	0.0	0.0	0.5	0.5	0.1	0.1
	high	2.8	0.1	0.2	.	.	0.0	0.0	0.0	0.1	0.2	0.3	0.2	0.1
		5.6	0.1	0.2	.	.	0.0	0.0	0.2	0.2	0.3	0.4	0.1	0.2
		8.4	0.1	0.1	.	.	0.0	0.0	0.0	0.0	0.4	0.2	0.1	0.1
Inv			0.3a	-	0.1a		0.1	0.2b	0.2a		0.1	0.1a	0	
Qtm			0.1b	-	0.0b		0.1	0.3a	0.1b		0.1	0.0b	0	
LSD _{0.05}			0.03		0.05			0.09	0.06		0.03	0.02	0.007	
low			0.2b	-	0.1		0.1	0.3	0.2		0.1	0	0	
mid			0.2b	-	0.1		0.1	0.3	0.1		0.1	0	0	
high			0.3a	-	0.1		0.1	0.2	0.2		0.1	0	0	
LSD _{0.05}			0.04		0.06			0.1	0.07		0.03	0.02	0	
2.8			0.2	-	0.1		0.1	0.3	0.1		0.1	0.02b	0	
5.6			0.2	-	0.1		0.1	0.3	0.1		0.1	0.04ab	0	
8.4			0.2	-	0		0.1	0.3	0.2		0.1	0.05b	0	
LSD _{0.05}			0.04		0.06			0.1	0.07		0.03	0.02	0	
no fung			0.2	-	0.1		0.1	0.3	0.1		0.1	0.1	0	
fung			0.2	-	0.1		0.1	0.3	0.2		0.1	0	0	
LSD _{0.05}			0.09		0.06			0.09	0.2		0.05	0.07	0.02	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case).

Appendix 5. Blackleg incidence (%)

Treatment			1999						2000						2001					
Crop	N	Seed	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd			
			0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	1		
Inv	low	2.8	13	18	.	.	10	6	5	5	19	9	9	9	6	4	3	3	1	0
		5.6	12	13	.	.	2	2	4	4	13	12	18	8	6	7	1	0	1	0
		8.4	11	11	.	.	5	2	1	2	9	6	10	24	5	3	4	1	1	1
	mid	2.8	13	17	.	.	8	2	2	6	10	10	7	8	7	9	0	0	0	2
		5.6	13	15	.	.	2	5	4	6	16	13	10	12	9	6	4	2	0	0
		8.4	12	12	.	.	3	2	5	9	11	11	18	8	9	5	3	3	0	0
	high	2.8	18	18	.	.	2	4	4	6	8	7	9	11	6	9	3	2	1	2
		5.6	24	19	.	.	9	3	2	4	8	12	5	19	8	7	4	2	0	1
		8.4	12	11	.	.	6	2	3	3	8	13	11	16	7	6	2	2	1	1
Qtm	low	2.8	4	4	.	.	1	0	3	2	17	15	8	12	8	4	3	0	0	0
		5.6	3	4	.	.	3	1	4	3	14	10	3	12	3	5	2	1	0	2
		8.4	7	6	.	.	1	1	9	6	13	11	13	6	2	5	2	0	0	0
	mid	2.8	6	5	.	.	2	2	4	4	22	12	6	2	9	9	0	2	2	0
		5.6	4	6	.	.	0	2	1	2	19	11	4	6	7	6	2	1	0	0
		8.4	8	5	.	.	0	1	2	1	16	17	7	6	7	7	0	1	0	0
	high	2.8	5	6	.	.	1	0	1	5	14	12	12	7	7	11	1	0	0	0
		5.6	6	6	.	.	1	1	7	6	14	16	6	11	8	5	1	0	0	1
		8.4	5	4	.	.	2	1	1	8	13	11	7	10	4	8	4	1	0	1
Inv			0.125	-		4.0a			4		11B		0.458333		6		0.08333		1	
Qtm			5b	-		1.0b			4		0.08333		7b		6		1B		0	
LSD _{0.05}			1.2			1.6					3.0@10		3.3		1.3		0.7@10		0.4	
low			8.8b	-		3			4		12		11		5b		2		1	
			9.6b	-		2			4		14		8		0.291667		1		0	
			11.1a	-		2			4		11		10		0.291667		2		0	
LSD _{0.05}			1.5			2					4.5		4		1.7		1		0.5	
mid			2.8	10.7a	-	3			4		13		8		7		1		1	
			5.6	10.2a	-	2			4		13		9		6		2		0	
			8.4	8.5b	-	2			4		11		11		6		2		0	
LSD _{0.05}			1.5			2					4.5		4		1.7		1		0.5	
high			10	-		3			3		13		9		6		2		0	
			10	-		2			4		11		10		6		1		0	
			LSD _{0.05}	2.5		1.9					5.5		10.6		3.2		2.5		1	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 6. Sclerotinia induced yield loss (%)

Treatment			1999						2000						2001					
Crop	N	Seed	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd			
			0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	
Inv	low	2.8	0.9	1.0	.	.	0.0	0.0	0.0	1.3	3.4	2.6	0.4	0.0	1.0	0.3	0.0	0.0	0.0	0.0
		5.6	1.0	0.7	.	.	0.0	0.0	0.1	0.0	9.6	3.6	1.5	0.0	0.5	0.1	0.0	0.0	0.0	0.1
		8.4	1.3	1.4	.	.	0.0	0.0	0.0	1.0	6.2	4.1	0.1	0.0	0.8	0.0	0.0	0.0	0.0	0.0
	mid	2.8	1.4	0.9	.	.	0.1	0.0	1.3	1.8	7.2	5.6	2.1	0.5	0.5	0.5	0.0	0.0	0.1	0.0
		5.6	1.2	1.3	.	.	0.3	0.0	0.3	0.3	7.2	3.6	0.2	0.1	0.8	1.0	0.0	0.0	0.0	0.0
		8.4	2.5	2.3	.	.	0.0	0.0	0.6	0.5	5.7	4.0	0.9	0.0	1.0	1.0	0.0	0.0	0.2	0.0
	high	2.8	0.8	0.8	.	.	0.0	0.0	0.0	0.0	4.3	1.4	3.7	0.1	1.4	0.8	0.0	0.0	0.1	0.0
		5.6	1.9	1.8	.	.	0.0	0.0	0.8	1.3	7.8	4.4	3.2	0.3	1.0	0.8	0.0	0.5	0.1	0.0
		8.4	2.0	3.1	.	.	0.0	0.0	0.0	0.3	6.8	4.9	3.3	0.5	1.3	0.5	0.0	0.0	0.1	0.0
Qtm	low	2.8	1.1	0.9	.	.	0.0	0.0	0.3	0.3	2.2	1.1	0.1	0.5	0.5	0.5	0.0	0.0	0.1	0.0
		5.6	1.0	1.1	.	.	0.0	0.0	0.3	0.8	5.7	4.6	0.0	0.0	1.3	0.8	0.0	0.0	0.2	0.0
		8.4	2	1.4	.	.	0.0	0.0	0.3	0.3	4.4	2.4	0.2	1.6	1.3	0.5	0.0	0.0	0.1	0.0
	mid	2.8	1.2	1.3	.	.	0.0	0.0	0.3	0.3	1.2	3.6	0.0	0.1	0.0	0.4	0.0	0.0	0.0	0.0
		5.6	1.5	1.2	.	.	0.3	0.0	0.0	0.5	3.3	2.3	0.0	0.1	0	0.5	0.0	0.0	0.0	0.0
		8.4	1.3	1.3	.	.	0.0	0.0	0.5	0.5	3.7	2.9	0.0	0.0	0.3	1.6	0.0	0.0	0.1	0.0
	high	2.8	0.8	0.9	.	.	0.0	0.0	1.0	0.0	4.5	2.7	1.0	0.0	1.0	0.8	0.0	0.1	0.0	0.0
		5.6	1.2	1.9	.	.	0.0	0.0	0.0	0.8	1.9	1.5	0.8	0.0	0.8	0.3	0.0	0.0	0.0	0.0
		8.4	0.9	1.0	.	.	0.0	0.0	0.0	0.8	4.7	2.7	1.2	0.0	1.5	0.5	0.0	0.0	0.1	0.1
Inv			1.5	-	0		0.5		5.1a		0.9a		0.7	0	0					
Qtm			1.2	-	0		0.4		3.1b		0.3b		0.7	0	0					
LSD _{0.05}			0.03		0.04				0.9		0.5		0.3	0.06	0.03					
low			1.1b	-	0		0.4		4		1.2a		0.6	0	0					
mid			1.46a	-	0		0.6		4		0.4b		0.6	0	0					
high			1.41ab	-	0		0.4		4		0.3b		0.8	0	0					
LSD _{0.05}			0.04		0.05				1.1		0.6		0.9	0.07	0.03					
2.8			1	-	0		0.5		3.3b		0.7		0.6	0	0					
5.6			1.3b	-	0		0.4		4.6a		0.5		0.6	0	0					
8.4			1.7a	-	0		0.4		4.3ab		0.6		0.8	0	0					
LSD _{0.05}			0.04		0.05				1.1		0.6		0.9	0.07	0.03					
no fung			1.3	-	0		0.3		5.0a		1.0a		0.8	0	0					
fung			1.3	-	0		0.6		3.2b		0.2b		0.6	0	0					
LSD _{0.05}			0.7		0.06				1.5		0.4		1.5	0.09	0.1					

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case).

Appendix 7. Sclerotina incidence (%)

Treatment			1999					2000					2001							
Crop	N	Seed	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd	Scott	Melfort	Ind Hd			
			0	1	0	1	0	1	0	1	0	0	1	0	1	0	1			
Inv	low	2.8	7	7	.	.	0	0	0	3	22	19	3	0	2	1	1	0	1	0
		5.6	6	4	.	.	0	0	1	0	45	22	4	0	1	1	0	0	0	2
		8.4	5	5	.	.	0	0	0	2	26	25	1	0	2	0	1	1	1	0
	mid	2.8	9	7	.	.	1	0	3	4	34	26	9	5	1	1	0	0	2	0
		5.6	8	8	.	.	0	0	1	1	33	25	2	2	2	3	0	0	1	0
		8.4	8	7	.	.	0	0	2	1	27	21	4	0	2	2	0	0	3	0
	high	2.8	5	6	.	.	0	0	0	0	25	11	12	1	3	2	0	0	1	0
		5.6	9	10	.	.	0	0	2	3	38	22	10	1	2	2	0	2	1	0
		8.4	6	9	.	.	0	0	0	1	35	21	10	2	3	1	0	0	2	1
Qtm	low	2.8	7	5	.	.	0	0	1	1	18	9	1	1	1	1	0	0	1	1
		5.6	5	5	.	.	0	0	1	2	30	29	0	0	3	2	0	0	2	0
		8.4	8	7	.	.	0	0	1	1	15	13	1	4	3	1	0	0	1	1
	mid	2.8	8	9	.	.	0	0	1	1	11	20	1	1	0	2	0	0	1	1
		5.6	7	7	.	.	0	0	0	2	15	14	1	2	0	1	0	0	1	1
		8.4	6	5	.	.	0	0	1	2	20	19	1	1	1	4	0	0	2	0
	high	2.8	4	6	.	.	0	0	2	1	21	18	3	0	2	2	0	1	0	1
		5.6	5	7	.	.	0	0	0	2	9	11	3	0	2	1	0	0	0	0
		8.4	5	5	.	.	0	0	0	2	18	14	4	1	3	1	0	0	2	3
Inv			7	-	0				1		26.2a		3.4a		2		0		1	
Qtm			6	-	0				1		16.6b		1.2b		1		0		1	
LSD _{0.05}			1.1		0.09						3.7		1.5		0.7		0.2		0.5	
low			5.8b	-	0				1		22		1.2b		1		0		1	
			7.4a	-	0				1		22		2.0ab		1		0		1	
			6.4ab	-	0				1		20		3.6a		2		0		1	
LSD _{0.05}			1.3		0.1						4.6		1.8		0.9		0.25		0.6	
2.8			7	-	0				1		19b		2.9		1.4		0		0.5ab	
			5.6	-	0				1		0		1.8		1.3		0		0.4b	
			8.4	-	0				1		21ab		2.1		1.7		0		1.1a	
LSD _{0.05}			1.3		0.1						4.6		1		0.9		0.25		0.6	
no fung			6	-	0				1		0		0.166667		2		0		1	
fung			7	-	0				1		19b		1b		1		0		0	
LSD _{0.05}			1.7		0.16						5.6		1		3.1		0.3		1.8	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 8. Plant density (#/m²)

Treatment			1999			2000			2001		
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian
Inv	low	2.8	39	-	44	46	12	68	85	32	32
		5.6	65	-	50	52	36	115	104	56	50
		8.4	159	-	81	117	26	171	145	71	37
	mid	2.8	35	-	31	53	7	58	85	21	36
		5.6	62	-	61	66	15	102	100	32	37
		8.4	130	-	66	114	24	174	137	62	56
	high	2.8	34	-	39	40	12	55	79	24	23
		5.6	68	-	51	76	12	121	107	33	45
		8.4	140	-	81	113	28	150	134	71	56
Qtm	low	2.8	60	-	55	40	14	61	99	28	42
		5.6	128	-	70	57	29	95	134	53	43
		8.4	229	-	83	78	52	143	226	72	44
	mid	2.8	56	-	42	47	12	84	94	25	30
		5.6	112	-	61	52	20	145	155	45	64
		8.4	273	-	82	96	33	126	188	62	30
	high	2.8	58	-	42	50	15	88	98	23	33
		5.6	115	-	67	61	30	91	135	37	31
		8.4	221	-	73	113	42	133	170	73	45
Inv			81b		56b	75a	19b	112	108b	45	41
Qtm			139a		64a	66b	27a	107	144a	46	40
LSD _{0.05}			7.2		4.7		5.4	14.1	11	6.5	7.1
	low		113		64a	65b	28a	109	132A	52a	41
	mid		111		57b	71ab	19b	115	126AB	41b	42
	high		106		59ab	76a	23ab	106	121B	43b	39
LSD _{0.05}			8.9		5.8		6.6	17.3	9.2@10	7.9	8.7
	2.8		47c		42c	46c	12c	69c	90c	25c	33b
	5.6		92b		60b	61b	24b	111b	122b	43b	45a
	8.4		192a		78a	105a	34a	149a	167a	68a	45a
LSD _{0.05}			8.9		5.8		6.6	17.3	13.5	7.9	8.7

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case).

Appendix 9. Days to flowering

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	53	-	51	55	63	61	55	59	58	
		5.6	53	-	51	54	61	61	55	58	58	
		8.4	53	-	49	54	60	61	55	57	58	
	mid	2.8	53	-	51	56	63	62	55	60	59	
		5.6	53	-	51	55	62	61	55	60	58	
		8.4	53	-	51	54	61	61	55	57	58	
	high	2.8	53	-	52	55	64	61	56	61	59	
		5.6	53	-	51	56	63	62	55	60	59	
		8.4	53	-	51	54	61	61	55	60	58	
Qtm	low	2.8	49	-	50	53	64	61	55	59	59	
		5.6	49	-	49	53	64	61	54	57	59	
		8.4	49	-	49	52	60	61	53	56	57	
	mid	2.8	49	-	51	52	64	61	55	59	60	
		5.6	49	-	50	52	63	61	54	59	58	
		8.4	49	-	49	51	61	61	54	57	58	
	high	2.8	49	-	50	53	65	61	55	59	59	
		5.6	49	-	49	52	63	61	54	59	59	
		8.4	49	-	49	52	63	61	54	57	58	
Inv			53a	-	51a	55	62b	61	55a	59a	58	
Qtm			49b	-	49b	52	63a	61	54b	58b	58.0	
LSD _{0.05}			0		0.3		0.5	0.3	0.2	0.5	0.5	
low			51	-	49.6b	53	62.1b	60.9B	54	57.6b	57.9B	
mid			51	-	50.5a	53	62.4ab	61.0B	55	58.7a	58.4AB	
high			51	-	50.4a	54	62.8a	61.3A	55	59.1a	58.5A	
LSD _{0.05}			0		0.4		0.6	0.3@10	0.3	0.6	0.5@10	
2.8			51	-	50.7a	54	64a	61	55.0a	59.4a	58.8a	
5.6			51	-	50.2b	54	63b	61	54.5b	58.8b	58.4a	
8.4			51	-	49.7c	53	61c	61	54.1c	57.3c	57.7b	
LSD _{0.05}			0		0.4		0.6	0.4	0.3	0.6	0.6	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case).

Appendix 10. Length of flowering

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	-	-	-	20	28	-	16	21	21	
		5.6	-	-	-	21	28	-	16	21	20	
		8.4	-	-	-	20	28	-	17	20	20	
	mid	2.8	-	-	-	22	28	-	16	22	25	
		5.6	-	-	-	20	27	-	16	19	22	
		8.4	-	-	-	19	28	-	16	22	22	
	high	2.8	-	-	-	22	28	-	16	22	23	
		5.6	-	-	-	20	27	-	16	20	23	
		8.4	-	-	-	19	28	-	16	20	23	
Qtm	low	2.8	-	-	-	24	27	-	16	22	29	
		5.6	-	-	-	22	27	-	17	23	28	
		8.4	-	-	-	22	28	-	18	24	24	
	mid	2.8	-	-	-	24	29	-	17	24	27	
		5.6	-	-	-	24	29	-	17	22	27	
		8.4	-	-	-	23	27	-	17	23	28	
	high	2.8	-	-	-	24	29	-	16	24	28	
		5.6	-	-	-	23	28	-	17	24	27	
		8.4	-	-	-	23	27	-	17	23	27	
Inv			-	-	-	20b	28	-	16b	21b	22b	
Qtm			-	-	-	0.45833	28	-	0.20833	0.45833	27a	
LSD _{0.05}						0.7			0.2	0.7	1.0	
low			-	-	-	22	28	-	17	21.6	23.6b	
mid			-	-	-	22	28	-	16	21.8	24.9a	
high			-	-	-	22	28	-	16	22.2	25.1a	
LSD _{0.05}						0.9			0.3	0.8	1.1	
2.8			-	-	-	22.5a	28	-	16.0c	22.5a	25.4a	
5.6			-	-	-	21.6b	28	-	16.5b	21.2b	44.5ab	
8.4			-	-	-	21.0b	28	-	16.9a	21.9ab	23.9b	
LSD _{0.05}						0.9			0.3	0.8	1.1	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 11. Days to Maturity

Treatment			1999			2000			2001		
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian
Inv	low	2.8	108	-	98	102	115	104	92	107	104
		5.6	103	-	98	101	112	104	91	107	104
		8.4	101	-	98	102	111	104	92	107	104
	mid	2.8	109	-	98	104	115	104	94	107	104
		5.6	109	-	98	102	113	104	92	107	104
		8.4	99	-	98	101	114	104	92	107	104
	high	2.8	112	-	98	102	115	104	93	107	104
		5.6	108	-	98	102	114	104	93	107	104
		8.4	100	-	98	101	112	104	92	107	104
Qtm	low	2.8	105	-	98	103	116	104	92	107	104
		5.6	101	-	98	102	114	104	91	107	104
		8.4	100	-	98	101	111	104	91	107	104
	mid	2.8	109	-	98	102	118	104	93	107	104
		5.6	103	-	98	102	116	104	92	107	104
		8.4	97	-	98	102	112	104	92	107	104
	high	2.8	104	-	98	103	116	104	93	107	104
		5.6	103	-	98	103	114	104	93	107	104
		8.4	102	-	98	102	114	104	92	107	104
Inv			105a		98	102	113b	104	92	107	104
Qtm			102b		98	102	114a	104	92	107	104
LSD _{0.05}			1.5		0		0.9	0	0.3		0
	low		102.7b		98	102	113b	104	91.3b	107	104
			104.1ab		98	102	114a	104	92.3a	107	104
			104.7a		98	102	114a	104	92.6a	107	104
LSD _{0.05}			1.8		0		1.1	0	0.4		0
		2.8	108a		98	103a	116a	104	92.7a	107	104
		5.6	104b		98	102ab	114b	104	91.9b	107	104
		8.4	100c		98	101b	113c	104	91.6b	107	104
LSD _{0.05}			1.8		0		1.1	0	0.4		0

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case).

Appendix 12. % oil

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	47.8	-	46.7	-	46.8	46.3	47.8	49.5	45.5	
		5.6	48.6	-	48.0	-	47.9	47.1	47.9	49.7	45.8	
		8.4	49.3	-	47.7	-	48.4	47.4	47.9	49.8	45.4	
	mid	2.8	48	-	45.5	-	46.1	46.6	47.2	48.4	44.7	
		5.6	48.2	-	47.1	-	46.8	46.8	47.3	48.6	45.0	
		8.4	49.2	-	46.3	-	46.9	46.1	47.3	48.8	44.8	
	high	2.8	47.5	-	43.7	-	45.5	45.9	47.0	48.1	44.5	
		5.6	48.4	-	45.3	-	46.1	45.7	46.6	48.3	44.8	
		8.4	48.5	-	44.8	-	46.8	46.1	47.0	48.0	44.7	
Qtm	low	2.8	49.7	-	46.6	-	45.7	46.6	49.2	47.3	42.9	
		5.6	50.9	-	46.9	-	46.8	45.9	49.0	47.5	43.3	
		8.4	51	-	47.1	-	47.2	45.3	49.0	47.4	43.3	
	mid	2.8	49.9	-	43.7	-	45.3	45.6	48.7	46.9	41.9	
		5.6	50.5	-	45.7	-	45.9	45.3	48.4	46.6	43.1	
		8.4	50.4	-	44.8	-	46.7	45.3	48.8	47.0	42.9	
	high	2.8	48.7	-	42.2	-	44.7	44.3	48.0	46.2	42.7	
		5.6	49.7	-	44.4	-	45.6	45.5	48.3	46.2	42.8	
		8.4	50	-	44.0	-	45.9	44.1	48.4	46.0	43.2	
Inv			48.4b	-	46.1a	-	46.8a	46.4a	47.3b	48.8a	45.0a	
Qtm			50.1a	-	45.1b	-	46.0b	45.3b	48.6a	46.8b	42.9b	
LSD _{0.05}			0.3		0.4		0.2	0.4	0.2	0.2	0.2	
low			49.5a	-	47.2a	-	47.1a	46.4a	48.5a	48.6a	44.4a	
mid			49.3a	-	45.5b	-	46.3b	46.0b	47.9b	47.7b	43.7b	
high			48.8b	-	44.1c	-	45.8c	45.3c	47.6c	47.1c	43.8b	
LSD _{0.05}			0.3		0.4		0.3	0.5	0.2	0.2	0.25	
2.8			48.6c	-	44.7c	-	45.7c	45.9	48	47.7	43.7b	
5.6			49.4b	-	46.3a	-	46.5b	46.0	47.9	47.8	44.1a	
8.4			49.7a	-	45.8b	-	47.0a	45.7	48.1	47.8	44.1a	
LSD _{0.05}			0.3		0.4		0.3	0.5	0.2	0.2	0.3	
no fung			49.3	-	45.6	-	46.2B	45.8	48.2	47.8	44.0	
fung			49.1	-	45.6	-	46.6A	46.0	47.8	47.8	44.0	
LSD _{0.05}			0.4	-	0.3	-	0.37@10	0.6	0.7	0.9	0.3	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 13. Oil Yield (kg/ha)

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	1038	-	705	-	716	815	47.8	811	569	
		5.6	1110	-	773	-	1127	887	47.9	873	604	
		8.4	1126	-	793	-	891	847	47.9	896	618	
	mid	2.8	1239	-	701	-	871	904	47.2	831	494	
		5.6	1165	-	856	-	1006	974	47.3	944	645	
		8.4	1179	-	939	-	986	1017	47.3	1038	653	
	high	2.8	1258	-	751	-	764	987	47.0	873	467	
		5.6	1306	-	854	-	1021	1035	46.6	932	593	
		8.4	1310	-	868	-	1165	1039	47.0	1019	643	
Qtm	low	2.8	1028	-	770	-	687	731	49.2	672	256	
		5.6	1126	-	754	-	874	742	49.0	775	390	
		8.4	1096	-	782	-	871	747	49.0	750	490	
	mid	2.8	1164	-	707	-	708	816	48.7	655	272	
		5.6	1205	-	837	-	854	832	48.4	789	407	
		8.4	1208	-	877	-	1044	839	48.8	836	379	
	high	2.8	1252	-	727	-	669	833	48.0	552	281	
		5.6	1259	-	865	-	1049	889	48.3	775	349	
		8.4	1277	-	920	-	1006	852	48.4	838	465	
Inv			1192	-	804	-	950a	945a	636	913a	587a	
Qtm			1179	-	804	-	863b	809b	583	738b	365b	
LSD _{0.05}			45	-	27	-	53	32	17	49	45	
low			1087c	-	763b	-	861b	795c	563	796B	488	
mid			1193b	-	820a	-	912ab	897b	615	849A	475	
high			1277a	-	831a	-	946a	939a	650	832AB	466	
LSD _{0.05}			55	-	33	-	64	39	21	50@10	55	
2.8			1163	-	727c	-	736b	848b	589	732b	390b	
5.6			1195	-	823b	-	988a	893a	596	848a	498a	
8.4			1199	-	863a	-	994a	890a	643	896a	541a	
LSD _{0.05}			55	-	33	-	64	39	21	60	55	
no fung			1174	-	778	-	869B	818	629	821	489	
fung			1197	-	831	-	944A	876	590	831	463	
LSD _{0.05}			86	-	100	-	95@10	71	94	142	128	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 14. Protein (%)

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	23.3	-	24.6	23.1	25.9	24.1	23.2	25.3	25.5	
		5.6	22.9	-	23.6	23.9	25.4	23.7	23.4	25.5	25.5	
		8.4	22.5	-	23.8	24.7	25.0	23.8	23.3	25.3	25.8	
	mid	2.8	23.3	-	25.4	24.7	26.6	23.9	24.1	25.5	26.0	
		5.6	23.3	-	24.3	23.5	26.0	23.7	23.8	25.4	25.9	
		8.4	23	-	24.8	23.3	26.0	23.8	24.0	25.6	25.9	
	high	2.8	23.8	-	26.7	23.8	26.6	24.7	24.1	25.4	26.1	
		5.6	23.4	-	25.4	24.1	26.5	24.1	24.6	25.5	25.9	
		8.4	23.2	-	25.7	22.7	25.9	24.2	24.4	25.8	26.1	
Qtm	low	2.8	23.3	-	23.2	23.4	25.9	23.5	23.2	24.3	25.9	
		5.6	22.8	-	22.9	23.7	25.3	23.7	23.4	24.2	25.6	
		8.4	23	-	22.4	23.7	25.0	24.1	23.6	23.9	25.4	
	mid	2.8	23.3	-	24.7	23.1	26.2	23.7	23.8	24.5	26.1	
		5.6	23.1	-	23.7	23.5	25.9	23.9	24.0	24.5	25.8	
		8.4	23.4	-	24.3	24.4	25.2	23.5	23.7	24.4	25.6	
	high	2.8	24.1	-	25.9	23.9	26.4	24.9	24.3	24.9	26.2	
		5.6	24	-	24.4	23.6	25.9	24.1	24.0	24.7	25.8	
		8.4	23.7	-	24.7	23.7	25.7	24.5	24.3	24.7	25.7	
Inv			23.2b	-	24.9a	23.8	26.0a	24.0	23.9	25.5a	25.9	
Qtm			23.4a	-	24.0b	23.6	25.7b	24.0	23.8	24.5b	25.8	
LSD _{0.05}			0.2	-	0.3	-	0.2	0.3	0.2	0.09	0.14	
low			23.0c	-	23.4c	23.6	25.4b	23.8b	23.4c	24.7c	25.6b	
mid			23.2b	-	24.5b	23.8	26.0a	23.7b	23.9b	25.0b	25.9a	
high			23.7a	-	25.4a	23.7	26.2a	24.4a	24.3a	25.2a	26.0a	
LSD _{0.05}			0.24	-	0.4	-	0.2	0.4	0.2	0.1	0.17	
2.8			23.5a	-	25.1a	23.7	26.3a	24.1	23.8	25	26.0a	
5.6			23.2b	-	24.1b	23.7	25.8b	23.8	23.9	25	25.7b	
8.4			23.1b	-	24.3b	23.8	25.5c	24.0	23.8	25	25.7b	
LSD _{0.05}			0.2	-	0.4	-	0.2	0.4	0.2	0.1	0.17	
no fung			23.5a	-	24.6A	23.4	26.0a	24.0	23.6	25	25.8	
fung			23.1b	-	24.3B	24	25.7b	24.0	24.1	25	25.9	
LSD _{0.05}			0.2	-	0.3@10	-	0.2	0.7	0.7	0.4	0.2	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case).

Appendix 15. Protein yield (kg/ha)

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	509	-	371	329	395	426	265	414	317	
		5.6	524	-	381	404	597	444	286	446	336	
		8.4	515	-	395	469	461	425	301	456	350	
	mid	2.8	603	-	390	486	499	464	328	436	287	
		5.6	562	-	442	359	558	493	301	492	370	
		8.4	553	-	503	367	546	526	354	543	377	
	high	2.8	631	-	459	384	445	531	342	459	273	
		5.6	631	-	480	442	587	545	341	491	341	
		8.4	628	-	497	379	646	544	374	548	374	
Qtm	low	2.8	485	-	382	302	387	370	242	345	154	
		5.6	505	-	368	278	473	384	271	397	228	
		8.4	497	-	373	305	461	397	260	379	285	
	mid	2.8	545	-	397	304	408	424	276	342	167	
		5.6	552	-	433	345	480	439	284	415	242	
		8.4	564	-	474	465	561	434	299	433	225	
	high	2.8	619	-	443	372	394	467	301	296	172	
		5.6	608	-	474	366	595	471	302	414	210	
		8.4	605	-	515	411	562	474	329	450	275	
Inv			573A	-	435	404a	526a	489a	321a	476a	336a	
Qtm			553B	-	429	348b	480b	429b	285b	386b	218b	
LSD _{0.05}			18@10	-	13		28	20	8	26	25	
	low		506c	-	378c	341b	462b	408c	271c	406b	278	
			563b	-	440b	391ab	509a	463b	307b	443a	278	
			620a	-	478a	397a	538a	505a	332a	443a	274	
	LSD _{0.05}		26	-	16		35	25	10	32	31	
			2.8	565	-	407c	364	421b	447	293b	382b	228b
			5.6	564	-	430b	363	548a	463	298b	442a	288a
	LSD _{0.05}		8.4	560	-	459a	402	540a	466	320a	468a	314a
			26	-	16		35	25	10	32	31	
			no fung		421	355b	487	459	309	429	284	
fung			575	-	443	398a	519	458	297	433	269	
LSD _{0.05}			46	-	50		47	35	39	84	76	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 16. % green seed

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	0.8	-	3.3	-	0.4	0.6	0.1	0	1.3	
		5.6	1.1	-	3.0	-	0.5	1.0	0.5	0	1.8	
		8.4	1.3	-	3.3	-	0.4	1.0	0.3	0.1	1.9	
	mid	2.8	1.9	-	2.8	-	0.3	0.9	0.1	0.3	3.2	
		5.6	1.1	-	3.8	-	0.4	0.6	0.5	0.1	2.1	
		8.4	1.1	-	3.2	-	0.3	1.0	0.4	0.1	1.5	
	high	2.8	1.9	-	4.3	-	0.5	0.6	1.0	0.3	2.6	
		5.6	1.3	-	3.7	-	1.4	0.6	0.3	0.1	2.9	
		8.4	1.3	-	3.4	-	0.4	0.7	1.0	0	2.0	
Qtm	low	2.8	1.1	-	2.3	-	0.6	1.0	0.6	0	4.1	
		5.6	0.6	-	2.5	-	0.5	1.5	0.4	0	4.6	
		8.4	1	-	2.1	-	0.3	0.9	0.4	0.1	2.4	
	mid	2.8	1.4	-	3.2	-	0.5	1.2	0.4	0.3	5.2	
		5.6	1.5	-	3.1	-	0.4	1.0	0.4	0	2.6	
		8.4	1.9	-	3.1	-	0.4	1.1	0.4	0	3.0	
	high	2.8	1.8	-	3.8	-	1.0	1.5	0.1	0.3	7.4	
		5.6	1.3	-	3.3	-	0.5	1.3	0.5	0.4	4.5	
		8.4	1.9	-	3.3	-	0.5	1.5	0.3	0.1	3.8	
Inv			1.3	-	3.4a	-	0.5	0.8b	0.5	0.1	2.1b	
Qtm			1.4	-	3.0b	-	0.5	1.2a	0.4	0.1	4.2a	
LSD _{0.05}			0.4		0.3		0.3	0.2	0.2	0.12	0.7	
low			1	-	2.7c	-	0.4ab	1.0	0.4	0.05B	2.7b	
mid			1.5b	-	3.2b	-	0.3b	1.0	0.4	0.1AB	2.9b	
high			1.5a	-	3.6a	-	0.7a	1.0	0.5	0.2A	3.9a	
LSD _{0.05}			0.46		0.3		0.3	0.25	0.3	0.12@10	0.9	
2.8			1.5a	-	3.3	-	0.5	1.0	0.4	0.2	4.0a	
5.6			1.4	-	3.2	-	0.6	1.0	0.4	0.1	3.0b	
8.4			1.4	-	3.1	-	0.4	1.0	0.4	0.1	2.4b	
LSD _{0.05}			0.5		0.3		0.3	0.25	0.3	0.14	0.9	
no fung			1.7a	-	3.2	-	0.5	1.0	0.3	0.1	3.0	
fung			1.0b	-	3.2	-	0.5	0.9	0.5	0.1	3.3	
LSD _{0.05}			0.5	-	0.1	-	0.3	0.3	0.4	0.2	1.3	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 16. % green seed

Treatment			1999			2000			2001			
Crop	N	Seed	Scott	Melfort	Indian	Scott	Melfort	Indian	Scott	Melfort	Indian	
Inv	low	2.8	0.8	-	3.3	-	0.4	0.6	0.1	0	1.3	
		5.6	1.1	-	3.0	-	0.5	1.0	0.5	0	1.8	
		8.4	1.3	-	3.3	-	0.4	1.0	0.3	0.1	1.9	
	mid	2.8	1.9	-	2.8	-	0.3	0.9	0.1	0.3	3.2	
		5.6	1.1	-	3.8	-	0.4	0.6	0.5	0.1	2.1	
		8.4	1.1	-	3.2	-	0.3	1.0	0.4	0.1	1.5	
	high	2.8	1.9	-	4.3	-	0.5	0.6	1.0	0.3	2.6	
		5.6	1.3	-	3.7	-	1.4	0.6	0.3	0.1	2.9	
		8.4	1.3	-	3.4	-	0.4	0.7	1.0	0	2.0	
Qtm	low	2.8	1.1	-	2.3	-	0.6	1.0	0.6	0	4.1	
		5.6	0.6	-	2.5	-	0.5	1.5	0.4	0	4.6	
		8.4	1	-	2.1	-	0.3	0.9	0.4	0.1	2.4	
	mid	2.8	1.4	-	3.2	-	0.5	1.2	0.4	0.3	5.2	
		5.6	1.5	-	3.1	-	0.4	1.0	0.4	0	2.6	
		8.4	1.9	-	3.1	-	0.4	1.1	0.4	0	3.0	
	high	2.8	1.8	-	3.8	-	1.0	1.5	0.1	0.3	7.4	
		5.6	1.3	-	3.3	-	0.5	1.3	0.5	0.4	4.5	
		8.4	1.9	-	3.3	-	0.5	1.5	0.3	0.1	3.8	
Inv			1.3	-	3.4a	-	0.5	0.8b	0.5	0.1	2.1b	
Qtm			1.4	-	3.0b	-	0.5	1.2a	0.4	0.1	4.2a	
LSD _{0.05}			0.4		0.3		0.3	0.2	0.2	0.12	0.7	
low			1	-	2.7c	-	0.4ab	1.0	0.4	0.05B	2.7b	
mid			1.5b	-	3.2b	-	0.3b	1.0	0.4	0.1AB	2.9b	
high			1.5a	-	3.6a	-	0.7a	1.0	0.5	0.2A	3.9a	
LSD _{0.05}			0.46		0.3		0.3	0.25	0.3	0.12@10	0.9	
2.8			1.5a	-	3.3	-	0.5	1.0	0.4	0.2	4.0a	
5.6			1.4	-	3.2	-	0.6	1.0	0.4	0.1	3.0b	
8.4			1.4	-	3.1	-	0.4	1.0	0.4	0.1	2.4b	
LSD _{0.05}			0.5		0.3		0.3	0.25	0.3	0.14	0.9	
no fung			1.7a	-	3.2	-	0.5	1.0	0.3	0.1	3.0	
fung			1.0b	-	3.2	-	0.5	0.9	0.5	0.1	3.3	
LSD _{0.05}			0.5	-	0.1	-	0.3	0.3	0.4	0.2	1.3	

Mean values followed by the same letter are not different at P=0.05 (lower case, or at P=0.10 (upper case)).

Appendix 17. Impact of cultivar selection and N rate on plant density, total biomass and grain yield.

N	2000				2001				Indian Head			
	Scott	Qtm	mean	Inv	Melfort	Qtm	mean	Inv	Scott	Qtm	mean	Inv
plant density (#/m ²)												
0	141	146	144a	164	212	188B	167	178	124	138	131	89
30	126	126	126ab	172	227	200A	159	146	152	154	135	145
60	137	128	132ab	161	196	178AB	169	150	159	119	157	138
90	125	137	131ab	168	206	187AB	167	162	164	137	153	145
120	115	135	125ab	153	191	172B	191	160	176	154	141	147
150	109	127	118b	175	188	181AB	168	165	166	126	132	129
mean	126	133	165b	203a	170	160	170	160	136	143	136	91
LSD _{0.05}	12	23	11	29@10	29	35	19	37	82b	97a	11	24
Biomass (kg/ha)												
0	4267	4585	4426c	6801	6330	6566	-	-	3298	3153	3175	2666
30	6329	6325	6327b	8320bc	7096de	7708	-	-	4729	4520	4624b	4394
60	7000	5481	6241b	8842b	8485bc	8664	-	-	5226	4425	4825ab	4762
90	7547	6993	7270a	9029ab	8988b	9009	-	-	5796	5518	5657a	4983
120	7013	6367	6690ab	8254bc	8692b	8473	-	-	5256	5077	5166ab	5138
150	7746	6808	7277a	9993a	7839cd	8916	-	-	5687	4992	5339ab	5783
mean	6650a	6093b	8540	7905	8540	976	-	-	4999a	4614b	4706a	4314b
LSD _{0.05}	469	654	369	875	369	875	-	-	369	875	379	412
Grain yield (kg/ha)												
0	1350	1311	1330d	2263cd	2120d	2192	1053f	1079ef	1066	775	673	725c
30	2286	1943	2114c	2530c	2471cd	2501	1198ef	1068f	1133	1005	1080	1043b
60	2162	1928	2045c	3093a	2461cd	2777	1388def	1545cd	1467	1266	926	1096b
90	2371	2212	2291ab	3068a	2623bc	2846	2414ab	1718cd	2066	1278	1272	1275a
120	2492	2274	2383a	2967ab	2905ab	2936	2011bc	1960bc	1986	1328	1299	1314a
150	2594	2265	2430a	2981ab	3105a	3043	2676a	1947bc	2312	1319	1290	1304a
mean	2209a	1989b	2817	2614	1790	1553	1162	1090	1162	1090	1591a	1329b
LSD _{0.05}	74	230	366	470	91	219	139	261	139	261	123	202

Mean values or cultivar* N rate values followed by the same letter are not different at P=0.05 (lower case), or at P=0.10 (upper case).

Appendix 18. Impact of cultivar selection and N rate on seed quality.

N	2000			2001								
	Scott	Melfort	Indian Head	Scott	Melfort	Indian Head	Inv	Qtm	mean	Inv	Qtm	mean
Protein content (%)	Inv	Qtm	mean	Inv	Qtm	mean	Inv	Qtm	mean	Inv	Qtm	mean
0	23.0	23.1	23.1c	24.6	23.9	24.3de	22.7	23.4	23.1b	22.8	23.1	22.9b
30	24.1	24.6	24.3abc	24.5	23.8	24.1	23.2	22.7	23.0b	22.7	23.1	22.9b
60	23.6	23.8	23.7bc	24.9	24.1	24.5cd	23.0	23.2	23.1b	24.4	24.4	24.4a
90	23.9	24.3	24.1abc	24.8	24.5	24.6c	23.4	23.5	23.5ab	24.4	24.8	24.9
120	24.9	24.7	24.8ab	25.3	24.8	25.0b	23.7	23.7	23.7a	24.6	24.8	24.7a
150	24.9	25.5	25.2a	25.7	25.1	25.4a	24.3	23.6	24.0a	24.8	24.2	24.8a
mean	24.1	24.3		25.0a	24.3b		23.4	23.3		24.0	24.0	
LSD _{0.05}	0.27		1.3	0.2		0.3	0.3	0.6		0.2	0.2	
Oil content (%)												
0	-	-	51.2	49.4	50.3a	-	49.8	47.7	48.8a	50.4	48.5	49.4a
30	-	-	50.8	49.1	49.9a	-	48.4	48.4	48.4a	50.4	47.9	49.2a
60	-	-	49.6	47.7	48.7b	-	46.5	44.4	45.5bc	49.4	46.6	48.0b
90	-	-	48.5	47.0	47.8c	-	45.7	45.9	45.8b	48.1	46.0	47.1c
120	-	-	47.6	46.8	47.2d	-	44.4	45.9	45.1bc	48.1	45.8	46.9c
150	-	-	46.8	45.9	46.3	-	44.7	44.2	44.4c	47.6	46.0	46.8c
mean	-	-	49.1a	47.6b		-	46.6	46.1		49.0a	46.8b	
LSD _{0.05}			0.3		0.5		0.9		1.1	0.2	0.5	
Green seed (%)												
0	-	-	0.0	0.0	0b	0.4	0.8	0.6BC	0.0	0.0	0.0	0.0
30	-	-	0.0	0.3	0.1b	0.5	0.6	0.5C	0.3	0.0	0.3	0.1
60	-	-	0.3	0.3	0.3b	0.7	1.1	0.9ABC	0.3	0.3ab	0.0	1.0
90	-	-	0.0	0.0	0b	1.7	1.1	1.4AB	0.3	0.4a	0.0	1.4
120	-	-	0.3	1.5	0.9a	0.7	1.1	0.9ABC	0.0	0.0	0.3	2.3
150	-	-	0.3	0.3	0.3b	0.8	2.1	1.5A	0.0	0b	0.3	2.5
mean	-	-	0.1b	0.4a		0.8	1.1		0.1	0.1	0.1	4.9
LSD _{0.05}			0.28	0.58		0.6	0.8@10		0.37	0.2	0.3	1.3b

Mean values or cultivar* N rate values followed by the same letter are not different at P=0.05 (lower case), or at P=0.10 (upper case).

Appendix 19. Impact of cultivar selection and N rate on protein and oil yield (kg/ha)

N	2000			2001			Indian Head								
	Inv	Scott	Melfort	Inv	Qtm	mean	Inv	Scott	mean	Inv	Qtm	mean	Inv	Qtm	mean
Protein yield (kg/ha)															
0	312	304	308c	557cd	506d	532	239g	253fg	246	176	155	165d	174	142	158c
30	551	479	515b	619c	589cd	604	278fg	242g	260	226	250	234c	381	288	335b
60	512	460	486b	772a	593cd	683	318efg	357def	338	309	226	267c	423	347	385ab
90	567	536	551ab	761a	641bc	701	565ab	405cde	485	311	307	309ab	430	385	408a
120	621	562	591a	750a	719ab	735	477bc	464bcd	471	323	319	321a	486	402	444a
150	646	578	612a	767a	779a	773	649a	461bcd	555	326	318	322a	493	392	443a
mean	535a	486b	704	638	421	364	421	364	279	263	21	50	34	34	427a
LSD _{0.05}	17	68	91	112	112	112	112	112	21	21	21	50	34	34	300b
Oil yield (Kg/ha)															
0	-	-	-	1157fg	1046g	1101	-	-	-	387	322	354b	362	295	328b
30	-	-	-	1285def	1211efg	1248	-	-	-	490	524	507a	795	589	692a
60	-	-	-	1536a	1174fg	1355	-	-	-	589	411	500a	853	665	759a
90	-	-	-	1489ab	1233def	1361	-	-	-	587	585	586a	832	713	772a
120	-	-	-	1411abc	1360bede	1386	-	-	-	595	597	596a	903	730	816a
150	-	-	-	1394abcd	1426abc	1410	-	-	-	592	570	581a	914	721	858
mean	-	-	-	1379	1242	173	-	-	-	540	502	502	777a	619b	851
LSD _{0.05}	-	-	-	-	-	-	-	-	-	50	103	103	66	66	554
															795a
															542b
															92

Mean values or cultivar* N rate values followed by the same letter are not different at P=0.05 (lower case), or at P=0.10 (upper case).

Appendix 20. Impact of cultivar selection and N rate on growth stage.

N	2000			2001								
	Scott	Melfort	Indian Head	Scott	Melfort	Indian Head						
Inv	Qtm	mean	Inv	Qtm	mean	Inv	Qtm	mean	Inv	Qtm	mean	
days to flowering												
0	54.3	52.3	53.3bc	56.5	56.3	56.4c	59.0	59.0	59.0b	54.5	53.5	52.0
30	54.3	52.0	53.1c	57.0	57.0	57.0c	60.0	60.0	60.0a	54.5	54.5	52.8e
60	54.8	52.3	53.5ab	58.0	57.0	57.5bc	60.0	60.0	60.0a	55.0	54.3	54.5bc
90	54.8	53.0	53.9a	58.5	57.3	57.9bc	60.0	60.0	60.0a	55.0	54.8	54.8d
120	55.0	52.3	53.6ab	59.0	57.8	58.3ab	60.0	60.0	60.0a	54.5	55.3	56.0
150	55.0	52.5	53.8ab	61.5	57.8	59.6a	60.0	60.0	60.0a	55.8	54.8	54.9ab
mean	54.7a	52.4b		58.4a	57.2b		59.8	59.8		54.9a	54.5b	
LSD _{0.05}	0.3	0.5		0.9	1.7		0	0		0.35	0.7	
length of flowering (days)												
0	21.8f	23.3d	22.6	21.5	21.8	21.7b	21.0	21.0	21lb	16.5	17.5	17.0a
30	21.5f	24.8bc		23.1	23.0	22.5	22.8ab	21.0	21b	16.5	16.5	16.5ab
60	22.3ef	25.8ab		24.1	26.0	23.0	24.5a	22.0	22a	16.0	16.8	16.4abc
90	22.8de	24.5c		23.7	25.5	22.8	24.2a	22.0	22a	16.0	16.3	16.1bc
120	22.8de	25.8ab		24.3	25.0	24.3	24.7a	22.0	22a	16.5	15.8	16.1bc
150	22.8de	26.0a		24.4	22.5	24.3	23.4ab	22.0	22a	15.3	16.3	15.8c
mean	22.3	25		23.9	23.1		21.7	21.7		16.1b	16.5a	
LSD _{0.05}	1			0.9	1.7		0	0		0.35	0.7	
days to maturity												
0	98.5	96.8	97.6d	108.0cd	107d	107.5	104.0	104.0	104	90.3	90.3	90.3e
30	101.8	100.8	101.3c	108.0cd	107d	107.5	104.0	104.0	104	91.0	91.0	91.0de
60	101.8	100.8	101.3c	108.5bc	108.0cd	108.3	104.0	104.0	104	91.5	91.5	91.5cd
90	103.0	102.3	102.6b	109.8b	109.5b	108.7	104.0	104.0	104	92.3	92.3	92.3bc
120	104.3	103.3	103.8a	113.0a	109.0bc	111	104.0	104.0	104	92.5	92.5	92.5ab
150	104.5	104.0	104.3a	113.0a	113.0a	113	104.0	104.0	104	93.3	93.3	93.3a
mean	102.3a	101.3b		111	108.9		104	104		91.8	91.8	
LSD _{0.05}	0.5	1.4		1.3			0	0		0.2	1.0	

Mean values or cultivar* N rate values followed by the same letter are not different at P=0.05 (lower case), or at P=0.10 (upper case).